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Abstract—New methods for maximum-likelihood sequence esti-
mation based on the Viterbi algorithm (VA) are presented. In the
proposed scheme, the channel estimator and the Viterbi processor
operate concurrently. At any given time-step, the sequence pro-
vided to the channel estimator comes from the survivor with the
best metric value. These already known modifications of the tradi-
tional decision-directed VA cause large variance in the estimated
channel coefficients. In fact, sequences with a high error rate may
be used to perform estimation, and also the adjustment term of the
channel tracking algorithm may exhibit abrupt changes caused by
a “survivor swap,” (that is by the event in which a different sur-
vivor has the best metric at stepn with respect to the stepn � 1).
The proposed regularization procedure forces the channel vector
to lie in the appropriate a priori known subspace: while the vari-
ance decreases, a certain amount of bias is introduced. The vari-
ance-bias tradeoff is then automatically adjusted by means of a
cross-validation “shrinkage” estimator, which is at the same time
optimal in a “small sample” predictive sum of squares sense and
asymptically model mean-squared-error optimal. The method is
shown by means of hardware experiments on a wide-band base
station extremely more effective than per survivor processing, min-
imum survivor processing, and traditional decision-directed ap-
proaches.

Index Terms—Adaptive maximum-likelihood sequence estima-
tion, band-limited channel, equalization, frequency-selective time-
varying channels, intersymbol interference.

I. INTRODUCTION

T HE BASEBAND segment of next-generation software
radios requires significant performance improvement of

the demodulator section of the transceiver. Typical propagation
scenarios in cellular communications are characterized by pos-
sibly rapid frequency-selective fading. This makes necessary
the use of advanced baseband signal processing techniques
to mitigate distortion induced by intersymbol interference
(ISI). While linear techniques to mitigate time-varying ISI are
attractive due to their conceptual simplicity, it is well known
and generally accepted that a nonlinear processor is definitely
more effective. Within the family of nonlinear methods, the
decision-feedback equalizer and the maximum-likelihood

Paper approved by B. L. Hughes, the Editor for Theory and Systems of the
IEEE Communications Society. Manuscript received September 23, 1998;
revised June 1, 1999. This paper was presented in part at the Ninth Virginia
Tech/MPRG Symposium on Wireless Personal Communications, Blacksburg,
VA, June 2–4, 1999.

The author is with the Telecommunications Group, Watkins–Johnson Com-
pany, Gaithersburg, MD 20878-1794 USA (e-mail: max.martone@wj.com).

Publisher Item Identifier S 0090-6778(00)00489-X.

sequence estimation (MLSE) [17], [19], [20] are extremely
popular and established approaches. MLSE is the optimum
strategy for sequence estimation in the presence of a perfectly
known channel and (white) Gaussian noise.

The fundamental three building blocks of an MLSE-based de-
modulator are: 1) front-end preprocessing; 2) channel estimator;
and 3) tree search processor. There are several approaches to
front-end preprocessing for MLSE (see [1]) at different levels
of optimality and complexity, where one always tries to sim-
plify the discrete-time model so that the symbol sequence is
simply convolved with a finite-impulse response filter with ad-
ditive white Gaussian noise. The tree-search processing method
of choice is usually the Viterbi algorithm (VA), a breadth-first
algorithm. Since the channel isa priori unknown, a symbol de-
cision-directed method can be used as in [21] to perform estima-
tion. However, this scheme implicitly assumes reliable symbol
decisions which may not be available at low signal-to-noise ratio
(SNR) and requires that the estimate is performed with a cer-
tain delay (the decision delay) with respect to the current state.
An alternative solution is to accomplish independent branch co-
efficients computation (with no delay) for each survivor path
[per survivor processing, (PSP)] [8] within the VA. However,
in this case, the channel estimation algorithm looses optimality
because there is a clear model mismatch (the assumed sequence
for all but one survivor is not the transmitted one). In addition,
the computational effort in the channel estimation of the PSP
technique is practically unfeasible if a large support ISI channel
is induced by significant delay spread of the frequency-selec-
tive fading channel. The minimum survivor processing (MSP)
technique of [3] uses at every step only one channel estimate,
but this estimate is derived using the sequence relative to the
survivor with the best metric value. However, the channel coef-
ficients are affected by large variance because of the following
facts.

• If the survivor with the best metric at step is different
from the survivor with the best metric at step, the symbol
sequence fed back to the channel estimator at step
may differ significantly from the symbol sequence used in
the previous step. We define this event a “survivor swap.”

• The survivor with the best metric value may contain a
number of errors in the sequence even if a survivor swap
did not occur.

In [3], it was suggested that the introduction of a small delay in
the channel estimation procedure mitigates the two problems.
The use of this delayed channel estimate in the metric is not
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technically correct, and again, significant performance degra-
dation occurs. We present an MSP method that allows tracking
the discrete-time channel response with no delay with respect
to the current state of the VA. A regularization procedure
forces the channel vector to lie in the appropriatea priori
known subspace. The well-known variance-bias tradeoff [14]
is then automatically adjusted by means of a cross-validation
“shrinkage” estimator, which is at the same time optimal in a
“small-sample” predictive sum of squares (PRESS) sense and
asymptotically (model) mean-squared-error (MSE) optimal.
The method is shown to be more effective than the PSP algo-
rithm, the MSP approach, and the traditional decision-directed
approach. The paper is organized as follows. In Section II and
Section III, we quickly review the system model and existing
MLSE techniques, respectively. In Section IV, we describe how
to regularize the estimates of the coefficients and use them in
the VA. In Section V, we describe an adaptive implementation,
and in Section VI, we show results of hardware experiments in
a realistic cellular system.

II. SYSTEM MODEL

A complex baseband modulated signal can be represented as
, where are the complex symbols

defining the signal constellation used for the particular digital
modulation scheme.1 The filter is a shaping filter (usually
a square root raised-cosine filter), andis the signaling interval.
The baseband continuous time representation of this signal at
the receiver is

(1)

where is the convolution of , the impulse re-
sponse of a frequency-selective fading multipath channel, and

, the overall shaping filter (in
[15] and [16] is a raised-cosine function), and is additive
white Gaussian noise. The received signal (1) is the input of an
ideal low-pass filter (see Fig. 1) with bandwidth Hz, such
that the bandwidth of satisfies . Sampling the
output of the ideal low-pass filter at rate ( is an
integer), we have the discrete-time system whose output sam-
ples form a set of sufficient statistics for MLSE

(2)

where is the sequence of symbols
interleaved with zeroes and

and are samples of a white Gaussian discrete-time process
with if is the two-sided power spectral
density of the channel noise. Assuming that the effective support
of is and that is the maximum duration
of the fading channel delay profile, the effective time span of

1It is �=4 differential quaternary phase-shift keying (DQPSK) in the US cel-
lular time-division multiple-access (TDMA) standard [15], [16].

is which basically
allows us to consider finite ISI over fractionally sampled
samples

(3)

with and .

A. Notation

In the following derivations, vectors and matrices are bold.
, , , designate transposition and Hermitian for

matrix and vector , respectively. Complex conjugation for
scalars, matrices, and vectors is indicated as, , and ,
respectively, while notations and stand for the
element of matrix and the th element of vector , respec-

tively. We use the notation for the 2-norm
of the complex -vector , and for the

identity matrix.

III. MLSE TECHNIQUES

According to the maximum-likelihood principle, the optimal
metric corresponding to the hypothesis that the sequence

was transmitted is

(4)

where , and is the branch
metric. The VA is widely used to efficiently perform the ex-
haustive search in the trellis of the hypotheses. In practice, the
time-varying coefficients are unknown and must be identi-
fied by means of an input/output system identification proce-
dure. If the true transmitted sequence could be provided at any
step by the VA, channel identification could be accomplished by
minimization of the MSE with respect to ,
where . Typical approaches to achieve
real-time channel estimation are gradient-based methods and re-
cursive least squares (RLS)-based methods. The typical recur-
sion in both cases is

(5)

where , if the algorithm of choice
is the least mean squares (LMS) andis a step-size parameter
that controls the rate of adjustment.2 However, since the true
transmitted sequence at is not available in practice, one is
forced to use sequences formed by past decisions on symbols at
the output of the Viterbi processor: estimation of the channel is
delayed by where is the decision delay of the VA.

An alternative solution is to accomplish independent branch
coefficients computation for each survivor path (PSP) [8] within
the VA. Denoting as the sequence relative to a generic sur-
vivor path, one updates the survivor channel as

(6)

2Observe that in the case of an RLS approach,ppp (aaa ; ĥhh ) =
�� (aaa ; ĥhh )KKK , where KKK = (PPP aaa =� + aaa PPP aaa ) and
PPP = � (PPP � aaa PPP KKK ) with � as the forgetting factor.
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Fig. 1. A block diagram of the transceiver (only the receiver section is shown).

In essence, this approach is an extension of the VA because it
implements basically the generalized likelihood detector [18].
An important criticism to the method is the fact that the channel
estimation algorithm (gradient based or least squares) used in
this particular context looses its optimality. It is in fact evident
that the model assumed by the recursive identification algorithm
for the generic survivor is

(7)

where the disturbance term

(8)

is evidently non-Gaussian [3]. As a consequence, the adjust-
ment term cannot be determined correctly to min-
imize the MSE. This loss of optimality is crucial because in
the known channel VA, the paths diverge in the steps immedi-
ately preceding step and quickly converge going back to the
past. Errors in cause the estimated coefficients to be sig-
nificantly different from . This in turn increases the proba-
bility of having path metrics in the vicinity of step that are
not distinguishable from the correct and maximum-likelihood
one. In addition, the computational effort in the channel esti-
mation of the PSP technique is practically unfeasible if a large
support ISI channel is induced by significant delay spread of the
frequency-selective fading channel. The MSP technique of [3]

uses at every step only one channel estimate, but this estimate
is derived using the sequence relative to the survivor with
the best metric value. However, is a large variance estimate
because of the following facts.

• If the survivor with the best metric at step is dif-
ferent from the survivor with the best metric at step, the
sequence fed back to the channel estimator at step

may differ significantly from , the symbol se-
quence used in the previous step. We define this event as
“survivor swap.”

• The survivor with the best metric value may contain a
number of errors in the sequence, even if a survivor
swap did not occur.

In [3], it was suggested that the introduction of a delay
in the channel estimation procedure mitigates the two

problems. The use of in the metric function
is however not technically correct, and again, significant perfor-
mance degradation occurs.

Prompted by the these observations, we look for a low-vari-
ance channel estimate as follows.

1) By forcing the channel estimates to lie in a known sub-
space; it is well known that by doing so, we trade variance
for bias

2) By using cross validation as a regularization procedure to
automatically (and optimally) adjust the tradeoff between
variance and bias in the channel estimate.
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IV. OPTIMAL CHANNEL ESTIMATION BASED

ON CROSSVALIDATION

The recursive channel estimation can be seen as

(9)

Now observe that since in practice, is estimated using a
known3 preamble, each term in summation (9) depends on the
initial condition . We can rewrite (9) as

(10)

with and model the channel bias in
each term as

(11)

where is a random disturbance withunknowndistribution.
We will show that it is possible to design an estimator which is
optimal for any “small” in a PRESS, while being asymptoti-
cally optimal in the (model) mean squared sense.

A. Orthonormal Basis for

The first step is to design an orthonormal basis forex-
ploiting the “structure” of the channel impulse response .
Observe that

(12)

can be discretized, as shown in [4], by

(13)

The accuracy of the approximation is arbitrary4 (see [4]). The
(fractionally) sampled channel then becomes

(14)

where and .
Neglecting the approximation error (which can be made arbi-
trarily small), it is possible to write (14) in vector form as

(15)

where and . Basically
(15) says that is in the subspace spanned by the columns of

, which, being known, allows the selection of an appropriate

3In the absence of a preamble, using a blind method, the initialization ofĥhh

is relatively arbitrary.
4It must hold(M + 1)T = NT . Accuracy is achieved by choosing a dis-

cretization intervalT sufficiently small.

orthonormal basis for the channel vector. Selection of a basis
is one way of incorporating prior signal information into any
estimation procedure. The value of estimating the signal as rep-
resented with respect to the basis is that the estimator is insen-
sitive to disturbance components outside the space spanned by
the basis, that is, the known subspace.

Consider the singular value decomposition (SVD) [7]) of
, where is , is ,

and is , and write

(16)

where . Consider , the
matrix formed by the first columns (singular vectors)

of corresponding to the significant singular values in. Ap-
plying the transformation

(17)

we define a “subspace parameter” . The orthonormal
columns of span a -dimensional subspace defined , such
that . Observe the following if the transformation

is selected with .

• The computational complexity is reduced because less pa-
rameters have to be estimated in the subspace parameter.

• More importantly, the estimate of is insensitive to the
disturbance components of , for

, and the resulting estimator has a smaller
variance than the full space estimator of.

However, these two advantages are obtained at the expenses of
estimation bias because in practice

(18)

with holds only approximately true and while the
variance increases with dimensions of the subspace the bias de-
creases [14]. Evidently, the goal of selecting a transformation
is to optimize the tradeoff between bias, variance, and computa-
tional load. The PRESS method can be seen as a method to auto-
matically adjust the amount of bias and variance introduced by a
given subspace estimation procedure [5]. In Fig. 2, we show the
evident variance-bias paradigm for a 20-taps channel fading at 8
km/h estimated in a perfect training situation (that is with com-
pletely known data), using RLS, but using transformations pro-
jecting the parameters in subspaces with reduced dimensions.
The figure shows the variance and the squared bias of the es-
timated using different orders of the subspace. Observe
that the variance increases with the subspace order, while the
bias exhibits the opposite behavior. In this particular case, the
MSE of the coefficients exhibits a minimum, which allows ad-
vantages with respect to the full-rank estimator. In some other
situations, one may desire less variance, while a slight increase
of MSE is still tolerable.

Remark: Observe that if the discretization interval is se-
lected such that , then the subspace with

gives a close to zero bias. However, this subspace
selection is not always possible in general.
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Fig. 2. The evident tradeoff between bias and variance in channel estimation.
A 20-taps Rayleigh fading channel is estimated using RLS in reduced-order
subspaces.

B. PRESS Method

Since we have selected a proper basis for, it is immediate
to see that

(19)
The estimator can also be expressed as the solution of a
least squares problem

(20)

In an attempt to regularize the least squares solution, we formu-
late a “penalized” least squares (PLS) problem

(21)

where is a diagonal matrix and are
the regularization parameters that control the amount of penal-
ization in each component of the least squares estimate. The
term is the “penalizing functional.” Increasing

increases the cost associated with channel estimates having
a large component in the corresponding subspace of the trans-
form space spanned by the columns of. The unique solution
to (21) is5 well known [5]

(22)

where is a diagonal matrix with
, and since is a real nonnegative number, we have

.
Remark: As noted by a reviewer, since the channel estimates

are already forced to lie in the subspace spanned by, it would
appear that there is no need for penalization. However,

5Observe that(22)is a “shrinkage” estimator because it shrinks the estimate
close to the origin.

in our approach is only an efficient orthonormal represen-
tation for the parameter, notthe main mechanism to reduce vari-
ance. Ideally, we would like further reduction of variance by
eliminating more columns from and using constrained solu-
tions of the form

(23)

with : , , for some .
However, further reduction of the subspace size increases bias.
The penalized least squares solution makes an optimal tradeoff
between these constrained estimators and the full subspace so-
lution (20), in fact, we would obtain the estimator (23) from (22)
if we selected , for , and ,
for .

If we define

(24)

we can design a validation function to be minimized with respect
to as

(25)

which is a PRESS. Basically, is a PLS estimate of
with the th vector omitted. Then, this estimate is used to

predict . Summing the squares of the errors for any,
one obtains the PRESS function which is a small-sample
optimality criterion. The objective is to find

(26)

A closed-form solution to the minimization problem can be
found as in [5]. Define

and

Setting the derivative of with respect to equal to
zero, it is easy to obtain that

It is evident that . If , is the re-

quired minimizer of . If instead , we have that
the required minimizer is equal to 1 because is strictly
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TABLE I
GRADIENT PRESS-REGULARIZED ALGORITHM

decreasing in whenever
. The optimal choice for is then

(27)

where

.

Observe that the PRESS estimator has an interesting sta-
tistical interpretation: it is asymptotically equivalent to the
estimator that minimizes , the model
MSE. In fact, modeling as deterministic and as
a zero-mean random disturbance with unknown distribution
and , one obtains that the value of
minimizing is

(28)

where . It is proved in [6] that

asymptotically .

V. ADAPTIVE IMPLEMENTATION

The transformation allows the modification of the original
data model into

(29)

where is the “transformed sequence.” For the
recursive procedure, the following occurs at every step.

• It obtains the estimate , adjusting the regularized es-
timate of the previous step.

• It computes the regularization parameters.

• It applies the regularization to .
The adaptation then becomes

(30)

where . To obtain , we use a
windowed estimate of

for , where is the size of the sliding window.
The algorithm is summarized in Table I.

RLS methods can also be used to improve tracking perfor-
mance. A particular modification of the QR-RLS (recursive
least squares based on QR decomposition) algorithm is derived
in the Appendix and summarized in Table II. The regularization
is obtained by just replacing (30) with

(31)

where , are obtained as described in the Appendix.
To obtain , we use the estimate of

for . In both methods, the sizeof the sliding
window has to be designed in such a way to accomodate the
time-varying characteristics of the channel, moreover the regu-
larization parameters are computed as

(32)

In rapidly fading environments, the size of the windowhas to
be only a few samples, which causes the estimates of
to be extremely noisy. A practical approach is to filter the es-
timated regularization parameters with a one-pole filter having
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TABLE II
QR-RLS PRESS-REGULARIZED ALGORITHM

response . This gives the following up-
date:

(33)

Observe that the “transformed” branch metric is

(34)

which can be used directly into the VA.

VI. PERFORMANCEANALYSIS RESULTS

The cellular TDMA system under analysis is IS-136
[15], [16]. Hardware experiments are performed using the
Watkins–Johnson wide-band dual-mode (AMPS and IS-136)
base station system . A block diagram of the receiver
section of the base station is shown in Fig. 1. The slots are 162
symbols long and the symbol period is 41.2 ms. Observe that

Fig. 3. Tracking a two-ray Rayleigh faded channel at 100 km/h with no delay
between the VA and the channel estimator using the MSP technique.

there are two antennas. The metric has to be modified for the
two independent fading branches as in the following:

(35)

where , are signal samples and discrete-time channel
from the th antenna . The dispersive channel is cre-
ated using a hardware fading emulator which models a two-ray
Rayleigh fading channel [15], [16]. The delay interval is the dif-
ference in time of arrival between the two rays at each antenna.
The Doppler frequency is related through wavelengthto the
th mobile transmitter velocity expressed in km/h. We com-

pare the following approaches.

• CLMS: Channel estimation with a single LMS channel
estimator, which is delayed symbols. This is
the typical approach of [2].

• CQRLS: Channel estimation with a single RLS based on
QR decomposition (QR-RLS) channel estimator, which is
delayed symbols.

• PSPLMS: Channel estimation with one LMS channel es-
timator per survivor using the PSP technique with
[8].

• PSPQRLS: Channel estimation with one QR-RLS
channel estimator per survivor using the PSP technique
with .

• MSPLMS: Channel estimation with a single LMS
channel estimator using the MSP technique with .
This is the approach of [3].

• MSPQRLS: Channel estimation with a single QR-RLS
channel estimator using the MSP technique with .

• CVMSPLMS(Q): Channel estimation with a single regu-
larized LMS channel estimator using the MSP technique
with and order of the subspace equal to.

• CVMSPQRLS(Q): Channel estimation with a single reg-
ularized QR-RLS channel estimator using the MSP tech-
nique with and order of the subspace equal to.
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Fig. 4. Hardware test setup for lab experiments.

The value of order of the “representation subspace” for
the channel can be typically selected as the number of sin-
gular values in the SVD of with magnitude larger than a
small number ranging between 0.01 and 0.001. We report the
performance of the method with different values of. The
oversampling factor is . Fig. 3 shows experiments where
we try to investigate the tracking capability of the method in a
computer simulation experiment. The plots show the trajectory
of the real part of the maximum energy fading coefficient com-
pared to the estimated one. The speed of the mobile is 100 km/h
and the delay interval is 20.6µs. We compare CVMSPLMS(4)
with MSPLMS. The SNR per bit is equal to 20 dB. The size
of the sliding window for computation of the regularization
parameters is . Observe the relative resistance to error
events exhibited by the cross-validated subspace approach.
The following figures describe only hardware implementation
results. The hardware test setup is depicted in Fig. 4. The
IS-136 signal generator simulates transmission of digital traffic
channel (DTC) frames coming from three different mobiles.
Additive Gaussian noise is injected on both diversity channels.
Observe that the DSP modem receives a sampling rate of 80
kHz after RF conversion and digital quadrature downconver-
sion. The wordlength used is 16, and the algorithm has been
implemented using analog devices fixed-point DSP processors.
A polyphase raised-cosine filter (rolloff factor equal to 0.35)
concatenated with an adjacent interference rejection filter
transforms the rate to kHz. Automatic gain control
is operated on a slot-by-slot basis. An open-loop synchronizer
chooses the optimum positioning of the metric computer with
a resolution of rate. In addition, as required by the specifi-
cation [15], [16], there is carrier frequency offset between the
local oscillator and the transmitted carrier frequency of about
213 Hz. Frequency offset is estimated and removed using a
second-order phase-locked loop. A detailed description of the
synchronizer and the frequency offset compensator is omitted

TABLE III
COMPUTATIONAL COMPLEXITY WITH TWO ANTENNAS, FOUR STATES, VA

OVERSAMPLING FACTOR 4, ISI SPAN OF TWO SYMBOLS

because it is beyond the scope of this paper. The trellis has four
states because the span of the ISI channel is two symbol periods,
which means that it is assumed . The complexity
of each algorithm is reported in Table III in MIPS (million of
instructions per second) for a two-antenna receiver. The com-
plexity is relevant to the processing of one single reverse digital
traffic channel. The above algorithms have been implemented
in analog devices ADSP-2181 processors (40-MHz clock rate,
16 bits fixed point arithmetic) with the exclusion of the PSP al-
gorithms that have been implemented in simulated fixed-point
C-language and executed on baseband samples collected from
the same hardware platform. Bit-error rate (BER) analysis re-
sults are shown in Figs. 5–7. Fig. 5 shows results at 100 km/h
versus delay interval, while the SNR per bit is 25 dB. Fig. 6 is
for delay interval equal to 20.6µs, varying the mobile speed and
SNR per bit equal to 22 dB. Fig. 7 depicts results for the LMS
case with the MSP technique for both regularized and not. It is
evident that there is a significant advantage using the cross-val-
idated method.
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Fig. 5. BER at SNR per bit equal to 25 dB and 100 km/h versus delay interval.

Fig. 6. BER at SNR per bit equal to 22 dB and 20.6�s delay interval and
versus mobile speed.

VII. CONCLUSIONS

We have studied a new practical solution to the adaptive
channel estimation problem in MLSE-based receivers. In the
proposed scheme, the channel estimator and the trellis-search
processor operate concurrently. At any given time-step, the
sequence provided to the channel estimator comes from the
survivor with the best metric value. These already known
modifications of the traditional decision-directed Viterbi-based
equalizer cause large variance in the estimated channel coef-
ficients, because sequences with high error rate may be used
to perform estimation, and because the adjustment term of the
channel tracking algorithm may exhibit abrupt changes caused
by a “survivor swap,” that is, by the event in which a different
survivor has best metric at stepwith respect to step .
By forcing the channel estimates to lie in a known subspace
and using cross validation as a regularization procedure, we
automatically (and optimally) adjust the amount of variance
and bias that contributes to the MSE of the channel estimate.
Specializing the results to the current U.S. standard IS-136
[15], [16] and to specific hardware implementations of the base
station transceiver, we presented the results of an extensive
investigation (in part also presented in [9], [11]–[13]) whose

Fig. 7. BER at 0-20.6-41.2�s delay interval for LMS-based MSP techniques.

goal was to select the most appropriate strategy for equalization
in a diversity receiver for field operations. Our results indicate
that the MSP technique of [3] with no delay between channel
tracker and Viterbi processor, in conjunction with the novel
subspace-regularized approach presented, outperforms the
traditional decision-directed approach and the PSP method and
is superior to these last two even if regularization is applied to
them.

APPENDIX

We have shown in [10] that at each step, the problem

(36)

where is theforgetting factor[7]

is the data matrix, and with
is equivalent to solving for

the problem

(37)

The orthogonal matrix is such that

where is upper triangular. As a consequence, one can
append a new data row to , sweep the last row of
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the augmented matrix by means of an orthogonal transformation
, apply the same transformation to the vector ,

and solve a triangular system by backsubstitution (for
details, see [10]). can be found as a product of Givens
rotation matrices [7]. Further, one can avoid the backsubstitution
(implicitly a serial process) to enhance parallelism. The matrix
factorization lemma [7, p. 590] says that for any two matrices

and related to and by orthogonal transformations,
that is

(38)

where , it holds the following fundamental relation

(39)

Fact 1: The inverse hermitian of (indicated as )
can be recursively computed using

(40)

Proof: Consider the factorization lemma with

and apply the orthogonal transformation to . It is pos-
sible to write

It is then evident that by writing down (39) for

we get

(41)

that is, .
Fact 2: is obtained as

(42)

where is obtained from (40) and is obtained as
shown in Table II.

Proof: We use again the matrix factorization lemma with
and defined as in the proof of Theorem 1 while we use

now

Using again (39) (because obviously (38) is verified), we can
write

(43)

which gives

(44)

This last expression proves (42).
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